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Examining the roles of digital twin platforms and PAT-
enabled, advanced-control bioreactors in bioprocess 
improvement for accelerated product development.

INTRODUCTION
In the biopharmaceutical industry, manufacturing success relies on the ongoing 

development, understanding, and improvement of involved processes. Today, 

digitalization and data-driven methodologies are opening the way for greater 

virtual exploration in the development and manufacturing design space. In parallel, 

real-time analytical technologies deliver the information required for performance 

understanding and data-driven bioprocess improvements. This article first 

examines how using a digital twin platform can increase speed to market and 

improve process performance, and then explores recent progress in applying 

process analytical technologies [PAT] for the automation of bioreactor systems.

PART 1: THE DIGITAL TWIN PLATFORM
The estimated average cost of developing a new drug is currently 1.3 billion USD 

and the process can take around ten years to complete.1 Within just one and a 

half months, Moderna brought the SARS-Cov-2 gene sequence from publication 

to shipping for the first vaccine for clinical trials. Their previous means of building 

digital capabilities and de-siloing data enabled seamless data flow throughout the 

company, supporting the rapid development and commercialization of the vaccine.

When developing any biopharmaceutical product, every month saved in 

development time potentially contributes millions of dollars to the top line. Digital 

twins have been used for years in a variety of industrial settings for process 

development, optimization, and control. While they are relatively new to the 

biopharmaceutical industry, it’s clear that using a digital twin model of bioreactor 

to de-silo data can save time while providing greater insight into the process.
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De-Siloing Data Across the Bioprocess Lifecycle

As shown in FIGURE 1, there are five distinct stages in 

the cell culture process: cell line development, process 

development, scale-up and scale-down, process 

characterization, and manufacturing. Each stage is 

significant, requiring and generating high-value data. 

Historically, this data has remained within each individual 

stage, and has not been used to build further knowledge 

of the overall process. A digital twin can bridge the gaps 

where data is under-utilized at the different  

lifecycle stages.

A digital twin is a virtual representation of a physical object, 

system, or process (in this case a bioreactor in the cell culture 

process) that is used to predict performance. The digital 

twin described in FIGURE 2 (Insilico Digital Twin, Yokogawa) 

predicts the concentration profiles of key components within 

the bioreactor during a virtual experiment. This hybrid digital 

twin is comprised of the following models:

• The reactor model tracks concentration changes due to 

feeding or sample removal, and represents concentration 

and volume changes due to feeding and sampling.
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• The extra-cellular reaction model includes reactions that 

take place in the cultivation media, but do not involve 

cells (e.g., oxidation of metabolites).

• The kinetic cell model tracks changes in concentrations 

primarily within the living cell that results from cell 

metabolism, growth, and culture status.

The kinetic cell model is arguably the most significant and 

is comprised of two sub-models. The first sub-model is the 

metabolic network model, a continuously refined, genome-

based network model of a particular cell line, in this case the 

Chinese Hamster Ovary [CHO-K1]. The second sub-model is 

the neural network artificial intelligence [AI] machine learning 

[ML]; this is the part of the model that drives the learning of 

the cellular metabolism dynamics. 

Inputs for the digital twin are the same as for a wet 

experiment: starting concentrations, volumes, and 

concentrations at inoculation. Process operating conditions 

must also be input. The outputs are the predicted 

concentration profiles of critical components, including 

biomass, titer, and lactate. In the wet lab, equivalent 

experimentation typically takes 10 to 12 days for mammalian 

cell culture, whereas virtualization in the digital twin is 

completed in a matter of seconds. This makes it possible 

to carry out thousands of virtual experiments to scan the 

design space of the cell culture process at various stages. 

Simply changing the feed concentrations, pH, temperature, 

or other parameters enables the optimal design space which 

can achieve higher titers or other favorable effects on critical 

quality attributes of the biologic being produced.

Connecting R&D and Manufacturing Workflows

The digital twin connects research and development [R&D] 

and manufacturing workflows. This is in part due to the 

design-enabling modification of each individual model 

within the overall hybrid digital twin model, independently of 

others. For example, if the data used to train the kinetic model 

originated from deep-well plates, the process model can be 

modified to reflect a higher-scale bioreactor to understand 

how those cells would respond in a different process. The 

reactor model reflects gas and liquid inflows and outflows, 

and tracks volume over time. Therefore, it can track the 

volumetric mass transfer coefficient [kLa] and shear stress, 

which are critical parameters for accurate prediction of 

behavior at larger scales.

Application Across the Lifecycle

This digital twin can also de-silo data across different 

scales. In cell line development, the digital twin can predict 

the performance of multiple clones in a variety of media 

and feeding schemes, and upon scale-up to bioreactors. It 

simultaneously accomplishes both smart clone and process 

development. Inserting a gene into a pool of cells produces 

a variety of different clones; knowing which will perform best 

saves substantial amounts of time and resources. Use of the 

digital twin reduces cell line development time by an estimated 

one to two months. Moving into process development, virtual 

optimization of process parameters means achieving process 

lockdown within one to two rounds of experimentation, again 

saving between one and two months of time.

The next stage is scale-up or scale-down. Having already 

experienced dynamic data during cell line and process 

development, the digital twin can predict process 

performance at scales up to 2000 L. It can also predict the set 

points of process parameters to establish a scale-down model. 

Minimizing engineering batches in this manner is estimated to 

save two to three months of development time.

When it comes to process characterization, the digital twin can 

predict the design space of a process and minimize the number 

of experiments at the edge-of-failure that need validation in 

the wet lab. This reduces the establishment of robust normal 

operating ranges by an estimated three to six months. Since 

the digital twin has been trained with various amounts of data 

at all stages of the process, it can be applied for predictive 

model control in manufacturing. Such control delivers real-time 
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prediction of future trajectories of manufacturing performance; 

this provides proper warning of potential deviations and enables 

preventative action to reduce batch failure. Not only does the 

digital twin save time, but it can significantly impact the cost of 

goods and experimentation.

Re-using Data Across Projects and Scales

In the hybrid-model digital twin, the neural network sub-model 

(part of the kinetic cell model) is split into two parts. One part 

learns the behavior of the host cell line while the other retains 

knowledge from past projects. So, for every new project, 

the kinetic cell model has a different layer that will learn the 

specifics of particular clones. The more the digital twin is 

involved in projects, the higher its predictive accuracy is, and 

the less new data it will require for subsequent projects.

The Digital Twin – Summary

FIGURE 3 illustrates how knowledge builds as each project 

adds to the clone-specific data and generic layers of the twin. 

The digital twin’s knowhow grows, reducing the need for 

excessive data across scales and lessening the time required 

for experimentation. Overall, the hybrid-model digital twin can 

save between eight and 15 months of time during chemistry, 

manufacturing, and controls [CMC] development.

PART 2: ADVANCES IN PAT-DRIVEN BIOREACTOR 
CONTROL AND AUTOMATION
Cell culture-based manufacturing processes are complex and 

have multiple critical process parameters [CPPs]. Deviation 

of a CPP from its optimal range can result in variability of 

critical quality attributes [CQAs] with potentially adverse 

consequences for a drug’s potency, performance, and safety. 

Maintaining proper cell health during manufacturing requires 

tight process control and techniques that allow real-time 

monitoring of process performance.

Different spectroscopy techniques are used widely as 

PAT tools in upstream bioprocesses since they provide 

continuous real-time monitoring and can be tuned and 

tailored for analysis of multiple targets. Not only do 

spectroscopic sensors allow continuous measurement of 

CPPs, but they are scalable, thus ensuring consistency from 
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the lab scale right through to manufacturing. However, the 

use of bioreactor in-line sensors in process development and 

manufacturing comes with challenges and can be costly to 

implement because:

• Conversion and interpretation of spectroscopic  

data requires expertise in both spectroscopy  

and programming.

• Commercial solutions usually employ proprietary logic 

for data interpretation, raising questions of suitability for 

specific media and cell types.

• Sensor data must be calibrated.

• Use of PAT for process control requires cell model 

development. This means massive datasets with 

accuracy potentially limited to a particular cell line, 

medium, and process. 

• Process control for biologics must be highly predictive 

(rather than reactive) because there is constant dynamic 

change to the existing state, and response times to 

control initiatives are slow.

The drive to simplify this multifaceted challenge has led to 

the development of a new lab scale mammalian bioreactor 

system [Advanced Control Bioreactor System BR1000, 

Yokogawa]. This reactor includes fully integrated hardware 

and software for implementation of upstream PAT without 

requiring technical or engineering expertise. It brings the 

benefits of PAT into a configuration that is accessible and 

allows users to achieve consistent results. 

PAT-Driven Bioreactor Design – Capabilities and Data

The Advanced Control Bioreactor System is designed to 

monitor growth and energy needs, and to stabilize cell 

culture (FIGURE 4). Near infrared [NIR] spectroscopy and 

dielectric impedance measurement [biocapacitance] 

are the key technologies. It is crucial to have engineering 

approaches employed to work around the obstacles end 

users encounter when trying to use, integrate, or calibrate 

PAT systems. Users can still customize their own cell models 

for high precision and dynamic control. In part, this is due 

to the model predictive control software that automates the 
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glucose-feeding requirements of the cell culture. The system 

enables unique calculations for cell growth dynamics, 

such as divisions per cell per hour and glucose and lactate 

metabolism as picograms per cell per hour. The model 

predictive control uses these calculations to evaluate current 

and future states of the culture to control feed requirements 

and overall glucose concentration.

The advanced capabilities of this bioreactor are largely the 

result of software innovations, technology integration, and 

the cell culture modelling approach. FIGURE 5 shows typical 

data from the PAT sensors employed. The continuous lines are 

real-time readings from the NIR or biocapacitance sensors, 

and the dashed lines connect periodic offline analytical values. 

These results indicate good correlation between the inline and 

reference values for this CHO cell culture.

Reproducibility is always a concern for developers, process 

engineers, and manufacturers. This was evaluated through 

simultaneous testing of three identical bioreactors using 

the same cell line model, all monitored and controlled with 

Lucullus PIMS Bioreactor Software [SecureCell]. The root-

mean-square error of prediction [RMSEP] value was selected 

to evaluate reproducibility. It measured the correlation of 

inline values for glucose, lactate, and viable cell density [VCD] 

versus offline reference measurements. Comparison of the 

offline RMSEP values across all three bioreactors indicated a 

high degree of reproducibility and fidelity in the detection and 

control capabilities of the systems.

The Bioreactor in Action – Examples of  

PAT-Enabled Applications

Accommodating low glucose requirements

Addressing the low glucose concentration requirements of 

some expression clones can be challenging. For example, 

trying to maintain a concentration of one g/L with manual 

operation is resource-intensive and risky, with accidental 

depletion having the potential to compromise the entire 

culture. Automated systems reduce the risk of glucose 

depletion, and having a model predictive control approach 

achieves the precision required to maintain such a low level in 

live culture.
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Shifting temperature for better yield

FIGURE 6 shows the outcome of a temperature shift experiment 

with respect to IgG production using CHO cells. Since 

temperature affects the NIR spectroscopy readings needed for 

glucose and lactate determination, a new calibration model was 

created for the application; this is a straightforward task with 

the system’s calibration modeler software. The data on the left 

in FIGURE 6 was generated using a constant 37oC temperature 

throughout the cell culture run, whereas data on the right shows 

the results after shifting the temperature down to 34oC at day 

five. This shift correlates roughly to when the culture reached 

maximum cell density. There was preservation of VCD and cell 

survival in late-stage culture and elevation of IgG levels from 1.2 

g/L to around 1.7 g/L, a 30% increase for this clone.

Working with perfusion cell cultures

Developing an alternating tangential flow [ATF] perfusion 

cell culture application required some modifications for 

the NIR to operate accurately at the high cell densities. This 

resulted in the installation of a custom-designed NIR flow cell 

downstream of the ATF column to enable reading of glucose 

and lactate levels in the cell-free media.

Exploring HEK293 and Adeno-associated  

Virus [AAV] production

To explore the bioreactor’s suitability for growing mammalian 

cells other than CHO, the calibration modeler software was 

tested for its ability to work with HEK293 cells, whose physical 

characteristics and growth profile differ from those of CHO 

cells. Since the calibration modeler software was developed 

specifically with CHO, this tested its ability to deal with 

multiple cell parameter deviations. Work to date indicates 

that, overall, HEK293 growth in AAV production appears to be 

on a par with, or higher than, optimized shake flask cultures 

with respect to viral yield, head filling efficiency, transfection 

efficiency, and overall performance.

The PAT-Enabled Bioreactor – Summary

The Advanced Control Bioreactor System leverages software 

innovations to enable more robust PAT. Combined with 

accurate proprietary model predictive control algorithms and 

customizable cell models, this system adds value to bioprocess 

development and operation. Such integrated systems are easy 

to use, reduce the amount of required labor, and eliminate the 

need to separately assemble and validate upstream bioreactor 
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PAT systems. From installation, a user needs only six to eight 

weeks to customize and calibrate a cell model specific to their 

own media, supplements, cell line and process (vessel, feeding 

routine, etc.) by using the software tools provided with the 

BR1000 bioreactor unit.
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